Tuesday, May 30, 2023


Biotechnology News Magazine

Looking Beyond Devices to Address Human Longevity Through Biomedical Engineering

Biomed expert examines how AI can help scientists and engineers in fighting diseases

Latest Posts

Airway Therapeutics Completes Dose Escalation in Phase 1b Trial of Zelpultide Alfa (AT-100) for Very Preterm Infants at Risk for Bronchopulmonary Dysplasia

Airway Therapeutics began recruiting patients on March 28, 2023, for daily treatment up to 7 days at the highest dose of zelpultide alfa (rhSP-D) following a Data Safety Monitoring Committee (DSMC) report of no safety concerns.

Roche introduces navify® Algorithm Suite, a digital library of medical algorithms that enhances clinical decision-making to optimise patient care

At the global HIMSS1 Conference, Roche showcases navify Algorithm Suite, a single platform offering clinicians access to medical algorithms generating insights to help improve care decisions.

PathO3Gen Solutions UVZone® Proven 99.9993% Effective Against Candida Auris: Shoes and Floors in Healthcare Facilities Should Be Addressed as Outbreak Continues

PathO3Gen Solutions’ multi-patented UVZone Shoe Sanitizing Stations, when placed in high-traffic and high-risk areas, enhance healthcare facility infection control measures, and may improve overall hospital biosafety.

Pharming announces the first commercial shipments of Joenja® (leniolisib) to patients in the U.S.

Under the terms of Pharming's 2019 exclusive license agreement with Novartis for leniolisib, the corresponding first commercial sale of Joenja® triggers a $10 million milestone payment by Pharming to Novartis.

Artificial intelligence, synthetic biology and collaboration are the building blocks that could help biomedical engineers crack the next big discovery in addressing complex health issues.

David Umulis, professor and the Dane A. Miller Head of Purdue University’s Weldon School of Biomedical Engineering, says those three areas are key in the rapidly changing biomedical engineering environment.

“Artificial intelligence is a game changer when it comes to biology, biomedical engineering and other related research areas,” Umulis said. “If we can develop the best way to use AI and other technologies, we will find ways to address human health and longevity that we could never imagine earlier.”

Umulis also serves as a senior research fellow for the Krach Institute for Tech Diplomacy at Purdue and as project director for the Emergent Mechanisms in Biology of Robustness Integration and Organization (EMBRIO) Institute.

A key example of those three areas working together can be found in his work leading the EMBRIO Institute. EMBRIO received $12.5 million in funding from the National Science Foundation and is a partnership across six higher education institutions that uses artificial intelligence in biology to see how cells defend themselves and how to repair cellular damage.

“A lot of things I’ve done in biology are now happening at a massive scale as data sciences and simulation sciences are starting to have a much larger impact in medicine, physiology, drug design and sensing,” he said. “As medicine and biomedical engineering become more integrated and data-centric, there’s an exploding need for expertise in those domains. People are much more conscious of wellness throughout development and aging, so there are more opportunities in all aspects of biomedical engineering.”

While leading the Weldon School of Biomedical Engineering’s 27-member and growing faculty, Umulis is expanding partnerships between the school and health care providers, medical researchers and medical device companies to take discoveries from the research labs to clinical settings. Umulis is expanding the school’s expertise by hiring three new faculty members, with specialties in biomaterials, cardiology, and digital health including data, AI and cybersecurity. Watch a video of him and his philosophy at Purdue.

Umulis says Purdue biomedical engineers are always in high demand, especially in the fields of vaccine and medication development and mobile tech.

More about David Umulis:

Specializes in use of high-performance computing and AI to support biological discovery, including cross-species predictions that could help pharmaceutical companies develop drugs, medications and vaccines quicker to address new diseases.
Laying the groundwork to expand Purdue’s biomedical engineering capabilities and expertise in fields such as pediatric health care, biomedical device security, digital health and emerging new disciplines in the field. He is also expanding partnerships between manufacturers, physicians and health care providers and academia.

Latest Posts

Learn More




Our Sister Publication

Medical Device News Magazine